Metamath Proof Explorer


Theorem mndtcbasval

Description: The base set of the category built from a monoid. (Contributed by Zhi Wang, 22-Sep-2024) (New usage is discouraged.)

Ref Expression
Hypotheses mndtcbas.c No typesetting found for |- ( ph -> C = ( MndToCat ` M ) ) with typecode |-
mndtcbas.m φMMnd
mndtcbas.b φB=BaseC
Assertion mndtcbasval φB=M

Proof

Step Hyp Ref Expression
1 mndtcbas.c Could not format ( ph -> C = ( MndToCat ` M ) ) : No typesetting found for |- ( ph -> C = ( MndToCat ` M ) ) with typecode |-
2 mndtcbas.m φMMnd
3 mndtcbas.b φB=BaseC
4 1 2 mndtcval φC=BasendxMHomndxMMBaseMcompndxMMM+M
5 4 fveq2d φBaseC=BaseBasendxMHomndxMMBaseMcompndxMMM+M
6 snex MV
7 catstr BasendxMHomndxMMBaseMcompndxMMM+MStruct115
8 baseid Base=SlotBasendx
9 snsstp1 BasendxMBasendxMHomndxMMBaseMcompndxMMM+M
10 7 8 9 strfv MVM=BaseBasendxMHomndxMMBaseMcompndxMMM+M
11 6 10 mp1i φM=BaseBasendxMHomndxMMBaseMcompndxMMM+M
12 5 3 11 3eqtr4d φB=M