Metamath Proof Explorer


Theorem mnfaddpnf

Description: Addition of negative and positive infinity. This is often taken to be a "null" value or out of the domain, but we define it (somewhat arbitrarily) to be zero so that the resulting function is total, which simplifies proofs. (Contributed by Mario Carneiro, 20-Aug-2015)

Ref Expression
Assertion mnfaddpnf −∞+𝑒+∞=0

Proof

Step Hyp Ref Expression
1 mnfxr −∞*
2 pnfxr +∞*
3 xaddval −∞*+∞*−∞+𝑒+∞=if−∞=+∞if+∞=−∞0+∞if−∞=−∞if+∞=+∞0−∞if+∞=+∞+∞if+∞=−∞−∞−∞++∞
4 1 2 3 mp2an −∞+𝑒+∞=if−∞=+∞if+∞=−∞0+∞if−∞=−∞if+∞=+∞0−∞if+∞=+∞+∞if+∞=−∞−∞−∞++∞
5 mnfnepnf −∞+∞
6 ifnefalse −∞+∞if−∞=+∞if+∞=−∞0+∞if−∞=−∞if+∞=+∞0−∞if+∞=+∞+∞if+∞=−∞−∞−∞++∞=if−∞=−∞if+∞=+∞0−∞if+∞=+∞+∞if+∞=−∞−∞−∞++∞
7 5 6 ax-mp if−∞=+∞if+∞=−∞0+∞if−∞=−∞if+∞=+∞0−∞if+∞=+∞+∞if+∞=−∞−∞−∞++∞=if−∞=−∞if+∞=+∞0−∞if+∞=+∞+∞if+∞=−∞−∞−∞++∞
8 eqid −∞=−∞
9 8 iftruei if−∞=−∞if+∞=+∞0−∞if+∞=+∞+∞if+∞=−∞−∞−∞++∞=if+∞=+∞0−∞
10 eqid +∞=+∞
11 10 iftruei if+∞=+∞0−∞=0
12 9 11 eqtri if−∞=−∞if+∞=+∞0−∞if+∞=+∞+∞if+∞=−∞−∞−∞++∞=0
13 7 12 eqtri if−∞=+∞if+∞=−∞0+∞if−∞=−∞if+∞=+∞0−∞if+∞=+∞+∞if+∞=−∞−∞−∞++∞=0
14 4 13 eqtri −∞+𝑒+∞=0