Metamath Proof Explorer


Theorem mnfltpnf

Description: Minus infinity is less than plus infinity. (Contributed by NM, 14-Oct-2005)

Ref Expression
Assertion mnfltpnf −∞<+∞

Proof

Step Hyp Ref Expression
1 eqid −∞=−∞
2 eqid +∞=+∞
3 olc −∞=−∞+∞=+∞−∞+∞−∞<+∞−∞=−∞+∞=+∞
4 1 2 3 mp2an −∞+∞−∞<+∞−∞=−∞+∞=+∞
5 4 orci −∞+∞−∞<+∞−∞=−∞+∞=+∞−∞+∞=+∞−∞=−∞+∞
6 mnfxr −∞*
7 pnfxr +∞*
8 ltxr −∞*+∞*−∞<+∞−∞+∞−∞<+∞−∞=−∞+∞=+∞−∞+∞=+∞−∞=−∞+∞
9 6 7 8 mp2an −∞<+∞−∞+∞−∞<+∞−∞=−∞+∞=+∞−∞+∞=+∞−∞=−∞+∞
10 5 9 mpbir −∞<+∞