Metamath Proof Explorer


Theorem mobid

Description: Formula-building rule for the at-most-one quantifier (deduction form). (Contributed by NM, 8-Mar-1995) Remove dependency on ax-10 , ax-11 , ax-13 . (Revised by BJ, 14-Oct-2022) (Proof shortened by Wolf Lammen, 18-Feb-2023)

Ref Expression
Hypotheses mobid.1 xφ
mobid.2 φψχ
Assertion mobid φ*xψ*xχ

Proof

Step Hyp Ref Expression
1 mobid.1 xφ
2 mobid.2 φψχ
3 1 2 alrimi φxψχ
4 mobi xψχ*xψ*xχ
5 3 4 syl φ*xψ*xχ