Metamath Proof Explorer


Theorem mobi

Description: Equivalence theorem for the at-most-one quantifier. (Contributed by BJ, 7-Oct-2022) (Proof shortened by Wolf Lammen, 18-Feb-2023)

Ref Expression
Assertion mobi xφψ*xφ*xψ

Proof

Step Hyp Ref Expression
1 albiim xφψxφψxψφ
2 moim xψφ*xφ*xψ
3 moim xφψ*xψ*xφ
4 2 3 impbid21d xφψxψφ*xφ*xψ
5 4 imp xφψxψφ*xφ*xψ
6 1 5 sylbi xφψ*xφ*xψ