Metamath Proof Explorer


Theorem mod2eq0even

Description: An integer is 0 modulo 2 iff it is even (i.e. divisible by 2), see example 2 in ApostolNT p. 107. (Contributed by AV, 21-Jul-2021)

Ref Expression
Assertion mod2eq0even NNmod2=02N

Proof

Step Hyp Ref Expression
1 2nn 2
2 dvdsval3 2N2NNmod2=0
3 1 2 mpan N2NNmod2=0
4 3 bicomd NNmod2=02N