Metamath Proof Explorer


Theorem modxp1i

Description: Add one to an exponent in a power mod calculation. (Contributed by Mario Carneiro, 21-Feb-2014)

Ref Expression
Hypotheses modxai.1 N
modxai.2 A
modxai.3 B0
modxai.4 D
modxai.5 K0
modxai.6 M0
modxp1i.9 ABmodN=KmodN
modxp1i.7 B+1=E
modxp1i.8 D N+M=KA
Assertion modxp1i AEmodN=MmodN

Proof

Step Hyp Ref Expression
1 modxai.1 N
2 modxai.2 A
3 modxai.3 B0
4 modxai.4 D
5 modxai.5 K0
6 modxai.6 M0
7 modxp1i.9 ABmodN=KmodN
8 modxp1i.7 B+1=E
9 modxp1i.8 D N+M=KA
10 1nn0 10
11 2 nnnn0i A0
12 2 nncni A
13 exp1 AA1=A
14 12 13 ax-mp A1=A
15 14 oveq1i A1modN=AmodN
16 1 2 3 4 5 6 10 11 7 15 8 9 modxai AEmodN=MmodN