Description: Add one to an exponent in a power mod calculation. (Contributed by Mario Carneiro, 21-Feb-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | modxai.1 | |- N e. NN |
|
| modxai.2 | |- A e. NN |
||
| modxai.3 | |- B e. NN0 |
||
| modxai.4 | |- D e. ZZ |
||
| modxai.5 | |- K e. NN0 |
||
| modxai.6 | |- M e. NN0 |
||
| modxp1i.9 | |- ( ( A ^ B ) mod N ) = ( K mod N ) |
||
| modxp1i.7 | |- ( B + 1 ) = E |
||
| modxp1i.8 | |- ( ( D x. N ) + M ) = ( K x. A ) |
||
| Assertion | modxp1i | |- ( ( A ^ E ) mod N ) = ( M mod N ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | modxai.1 | |- N e. NN |
|
| 2 | modxai.2 | |- A e. NN |
|
| 3 | modxai.3 | |- B e. NN0 |
|
| 4 | modxai.4 | |- D e. ZZ |
|
| 5 | modxai.5 | |- K e. NN0 |
|
| 6 | modxai.6 | |- M e. NN0 |
|
| 7 | modxp1i.9 | |- ( ( A ^ B ) mod N ) = ( K mod N ) |
|
| 8 | modxp1i.7 | |- ( B + 1 ) = E |
|
| 9 | modxp1i.8 | |- ( ( D x. N ) + M ) = ( K x. A ) |
|
| 10 | 1nn0 | |- 1 e. NN0 |
|
| 11 | 2 | nnnn0i | |- A e. NN0 |
| 12 | 2 | nncni | |- A e. CC |
| 13 | exp1 | |- ( A e. CC -> ( A ^ 1 ) = A ) |
|
| 14 | 12 13 | ax-mp | |- ( A ^ 1 ) = A |
| 15 | 14 | oveq1i | |- ( ( A ^ 1 ) mod N ) = ( A mod N ) |
| 16 | 1 2 3 4 5 6 10 11 7 15 8 9 | modxai | |- ( ( A ^ E ) mod N ) = ( M mod N ) |