| Step |
Hyp |
Ref |
Expression |
| 1 |
|
modxai.1 |
|- N e. NN |
| 2 |
|
modxai.2 |
|- A e. NN |
| 3 |
|
modxai.3 |
|- B e. NN0 |
| 4 |
|
modxai.4 |
|- D e. ZZ |
| 5 |
|
modxai.5 |
|- K e. NN0 |
| 6 |
|
modxai.6 |
|- M e. NN0 |
| 7 |
|
modxai.7 |
|- C e. NN0 |
| 8 |
|
modxai.8 |
|- L e. NN0 |
| 9 |
|
modxai.11 |
|- ( ( A ^ B ) mod N ) = ( K mod N ) |
| 10 |
|
modxai.12 |
|- ( ( A ^ C ) mod N ) = ( L mod N ) |
| 11 |
|
modxai.9 |
|- ( B + C ) = E |
| 12 |
|
modxai.10 |
|- ( ( D x. N ) + M ) = ( K x. L ) |
| 13 |
11
|
oveq2i |
|- ( A ^ ( B + C ) ) = ( A ^ E ) |
| 14 |
2
|
nncni |
|- A e. CC |
| 15 |
|
expadd |
|- ( ( A e. CC /\ B e. NN0 /\ C e. NN0 ) -> ( A ^ ( B + C ) ) = ( ( A ^ B ) x. ( A ^ C ) ) ) |
| 16 |
14 3 7 15
|
mp3an |
|- ( A ^ ( B + C ) ) = ( ( A ^ B ) x. ( A ^ C ) ) |
| 17 |
13 16
|
eqtr3i |
|- ( A ^ E ) = ( ( A ^ B ) x. ( A ^ C ) ) |
| 18 |
17
|
oveq1i |
|- ( ( A ^ E ) mod N ) = ( ( ( A ^ B ) x. ( A ^ C ) ) mod N ) |
| 19 |
|
nnexpcl |
|- ( ( A e. NN /\ B e. NN0 ) -> ( A ^ B ) e. NN ) |
| 20 |
2 3 19
|
mp2an |
|- ( A ^ B ) e. NN |
| 21 |
20
|
nnzi |
|- ( A ^ B ) e. ZZ |
| 22 |
21
|
a1i |
|- ( T. -> ( A ^ B ) e. ZZ ) |
| 23 |
5
|
nn0zi |
|- K e. ZZ |
| 24 |
23
|
a1i |
|- ( T. -> K e. ZZ ) |
| 25 |
|
nnexpcl |
|- ( ( A e. NN /\ C e. NN0 ) -> ( A ^ C ) e. NN ) |
| 26 |
2 7 25
|
mp2an |
|- ( A ^ C ) e. NN |
| 27 |
26
|
nnzi |
|- ( A ^ C ) e. ZZ |
| 28 |
27
|
a1i |
|- ( T. -> ( A ^ C ) e. ZZ ) |
| 29 |
8
|
nn0zi |
|- L e. ZZ |
| 30 |
29
|
a1i |
|- ( T. -> L e. ZZ ) |
| 31 |
|
nnrp |
|- ( N e. NN -> N e. RR+ ) |
| 32 |
1 31
|
ax-mp |
|- N e. RR+ |
| 33 |
32
|
a1i |
|- ( T. -> N e. RR+ ) |
| 34 |
9
|
a1i |
|- ( T. -> ( ( A ^ B ) mod N ) = ( K mod N ) ) |
| 35 |
10
|
a1i |
|- ( T. -> ( ( A ^ C ) mod N ) = ( L mod N ) ) |
| 36 |
22 24 28 30 33 34 35
|
modmul12d |
|- ( T. -> ( ( ( A ^ B ) x. ( A ^ C ) ) mod N ) = ( ( K x. L ) mod N ) ) |
| 37 |
36
|
mptru |
|- ( ( ( A ^ B ) x. ( A ^ C ) ) mod N ) = ( ( K x. L ) mod N ) |
| 38 |
|
zcn |
|- ( D e. ZZ -> D e. CC ) |
| 39 |
4 38
|
ax-mp |
|- D e. CC |
| 40 |
1
|
nncni |
|- N e. CC |
| 41 |
39 40
|
mulcli |
|- ( D x. N ) e. CC |
| 42 |
6
|
nn0cni |
|- M e. CC |
| 43 |
41 42
|
addcomi |
|- ( ( D x. N ) + M ) = ( M + ( D x. N ) ) |
| 44 |
12 43
|
eqtr3i |
|- ( K x. L ) = ( M + ( D x. N ) ) |
| 45 |
44
|
oveq1i |
|- ( ( K x. L ) mod N ) = ( ( M + ( D x. N ) ) mod N ) |
| 46 |
37 45
|
eqtri |
|- ( ( ( A ^ B ) x. ( A ^ C ) ) mod N ) = ( ( M + ( D x. N ) ) mod N ) |
| 47 |
6
|
nn0rei |
|- M e. RR |
| 48 |
|
modcyc |
|- ( ( M e. RR /\ N e. RR+ /\ D e. ZZ ) -> ( ( M + ( D x. N ) ) mod N ) = ( M mod N ) ) |
| 49 |
47 32 4 48
|
mp3an |
|- ( ( M + ( D x. N ) ) mod N ) = ( M mod N ) |
| 50 |
46 49
|
eqtri |
|- ( ( ( A ^ B ) x. ( A ^ C ) ) mod N ) = ( M mod N ) |
| 51 |
18 50
|
eqtri |
|- ( ( A ^ E ) mod N ) = ( M mod N ) |