| Step |
Hyp |
Ref |
Expression |
| 1 |
|
modxai.1 |
⊢ 𝑁 ∈ ℕ |
| 2 |
|
modxai.2 |
⊢ 𝐴 ∈ ℕ |
| 3 |
|
modxai.3 |
⊢ 𝐵 ∈ ℕ0 |
| 4 |
|
modxai.4 |
⊢ 𝐷 ∈ ℤ |
| 5 |
|
modxai.5 |
⊢ 𝐾 ∈ ℕ0 |
| 6 |
|
modxai.6 |
⊢ 𝑀 ∈ ℕ0 |
| 7 |
|
modxai.7 |
⊢ 𝐶 ∈ ℕ0 |
| 8 |
|
modxai.8 |
⊢ 𝐿 ∈ ℕ0 |
| 9 |
|
modxai.11 |
⊢ ( ( 𝐴 ↑ 𝐵 ) mod 𝑁 ) = ( 𝐾 mod 𝑁 ) |
| 10 |
|
modxai.12 |
⊢ ( ( 𝐴 ↑ 𝐶 ) mod 𝑁 ) = ( 𝐿 mod 𝑁 ) |
| 11 |
|
modxai.9 |
⊢ ( 𝐵 + 𝐶 ) = 𝐸 |
| 12 |
|
modxai.10 |
⊢ ( ( 𝐷 · 𝑁 ) + 𝑀 ) = ( 𝐾 · 𝐿 ) |
| 13 |
11
|
oveq2i |
⊢ ( 𝐴 ↑ ( 𝐵 + 𝐶 ) ) = ( 𝐴 ↑ 𝐸 ) |
| 14 |
2
|
nncni |
⊢ 𝐴 ∈ ℂ |
| 15 |
|
expadd |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℕ0 ∧ 𝐶 ∈ ℕ0 ) → ( 𝐴 ↑ ( 𝐵 + 𝐶 ) ) = ( ( 𝐴 ↑ 𝐵 ) · ( 𝐴 ↑ 𝐶 ) ) ) |
| 16 |
14 3 7 15
|
mp3an |
⊢ ( 𝐴 ↑ ( 𝐵 + 𝐶 ) ) = ( ( 𝐴 ↑ 𝐵 ) · ( 𝐴 ↑ 𝐶 ) ) |
| 17 |
13 16
|
eqtr3i |
⊢ ( 𝐴 ↑ 𝐸 ) = ( ( 𝐴 ↑ 𝐵 ) · ( 𝐴 ↑ 𝐶 ) ) |
| 18 |
17
|
oveq1i |
⊢ ( ( 𝐴 ↑ 𝐸 ) mod 𝑁 ) = ( ( ( 𝐴 ↑ 𝐵 ) · ( 𝐴 ↑ 𝐶 ) ) mod 𝑁 ) |
| 19 |
|
nnexpcl |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ0 ) → ( 𝐴 ↑ 𝐵 ) ∈ ℕ ) |
| 20 |
2 3 19
|
mp2an |
⊢ ( 𝐴 ↑ 𝐵 ) ∈ ℕ |
| 21 |
20
|
nnzi |
⊢ ( 𝐴 ↑ 𝐵 ) ∈ ℤ |
| 22 |
21
|
a1i |
⊢ ( ⊤ → ( 𝐴 ↑ 𝐵 ) ∈ ℤ ) |
| 23 |
5
|
nn0zi |
⊢ 𝐾 ∈ ℤ |
| 24 |
23
|
a1i |
⊢ ( ⊤ → 𝐾 ∈ ℤ ) |
| 25 |
|
nnexpcl |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐶 ∈ ℕ0 ) → ( 𝐴 ↑ 𝐶 ) ∈ ℕ ) |
| 26 |
2 7 25
|
mp2an |
⊢ ( 𝐴 ↑ 𝐶 ) ∈ ℕ |
| 27 |
26
|
nnzi |
⊢ ( 𝐴 ↑ 𝐶 ) ∈ ℤ |
| 28 |
27
|
a1i |
⊢ ( ⊤ → ( 𝐴 ↑ 𝐶 ) ∈ ℤ ) |
| 29 |
8
|
nn0zi |
⊢ 𝐿 ∈ ℤ |
| 30 |
29
|
a1i |
⊢ ( ⊤ → 𝐿 ∈ ℤ ) |
| 31 |
|
nnrp |
⊢ ( 𝑁 ∈ ℕ → 𝑁 ∈ ℝ+ ) |
| 32 |
1 31
|
ax-mp |
⊢ 𝑁 ∈ ℝ+ |
| 33 |
32
|
a1i |
⊢ ( ⊤ → 𝑁 ∈ ℝ+ ) |
| 34 |
9
|
a1i |
⊢ ( ⊤ → ( ( 𝐴 ↑ 𝐵 ) mod 𝑁 ) = ( 𝐾 mod 𝑁 ) ) |
| 35 |
10
|
a1i |
⊢ ( ⊤ → ( ( 𝐴 ↑ 𝐶 ) mod 𝑁 ) = ( 𝐿 mod 𝑁 ) ) |
| 36 |
22 24 28 30 33 34 35
|
modmul12d |
⊢ ( ⊤ → ( ( ( 𝐴 ↑ 𝐵 ) · ( 𝐴 ↑ 𝐶 ) ) mod 𝑁 ) = ( ( 𝐾 · 𝐿 ) mod 𝑁 ) ) |
| 37 |
36
|
mptru |
⊢ ( ( ( 𝐴 ↑ 𝐵 ) · ( 𝐴 ↑ 𝐶 ) ) mod 𝑁 ) = ( ( 𝐾 · 𝐿 ) mod 𝑁 ) |
| 38 |
|
zcn |
⊢ ( 𝐷 ∈ ℤ → 𝐷 ∈ ℂ ) |
| 39 |
4 38
|
ax-mp |
⊢ 𝐷 ∈ ℂ |
| 40 |
1
|
nncni |
⊢ 𝑁 ∈ ℂ |
| 41 |
39 40
|
mulcli |
⊢ ( 𝐷 · 𝑁 ) ∈ ℂ |
| 42 |
6
|
nn0cni |
⊢ 𝑀 ∈ ℂ |
| 43 |
41 42
|
addcomi |
⊢ ( ( 𝐷 · 𝑁 ) + 𝑀 ) = ( 𝑀 + ( 𝐷 · 𝑁 ) ) |
| 44 |
12 43
|
eqtr3i |
⊢ ( 𝐾 · 𝐿 ) = ( 𝑀 + ( 𝐷 · 𝑁 ) ) |
| 45 |
44
|
oveq1i |
⊢ ( ( 𝐾 · 𝐿 ) mod 𝑁 ) = ( ( 𝑀 + ( 𝐷 · 𝑁 ) ) mod 𝑁 ) |
| 46 |
37 45
|
eqtri |
⊢ ( ( ( 𝐴 ↑ 𝐵 ) · ( 𝐴 ↑ 𝐶 ) ) mod 𝑁 ) = ( ( 𝑀 + ( 𝐷 · 𝑁 ) ) mod 𝑁 ) |
| 47 |
6
|
nn0rei |
⊢ 𝑀 ∈ ℝ |
| 48 |
|
modcyc |
⊢ ( ( 𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ+ ∧ 𝐷 ∈ ℤ ) → ( ( 𝑀 + ( 𝐷 · 𝑁 ) ) mod 𝑁 ) = ( 𝑀 mod 𝑁 ) ) |
| 49 |
47 32 4 48
|
mp3an |
⊢ ( ( 𝑀 + ( 𝐷 · 𝑁 ) ) mod 𝑁 ) = ( 𝑀 mod 𝑁 ) |
| 50 |
46 49
|
eqtri |
⊢ ( ( ( 𝐴 ↑ 𝐵 ) · ( 𝐴 ↑ 𝐶 ) ) mod 𝑁 ) = ( 𝑀 mod 𝑁 ) |
| 51 |
18 50
|
eqtri |
⊢ ( ( 𝐴 ↑ 𝐸 ) mod 𝑁 ) = ( 𝑀 mod 𝑁 ) |