| Step | Hyp | Ref | Expression | 
						
							| 1 |  | zre |  |-  ( N e. ZZ -> N e. RR ) | 
						
							| 2 |  | rpre |  |-  ( B e. RR+ -> B e. RR ) | 
						
							| 3 |  | remulcl |  |-  ( ( N e. RR /\ B e. RR ) -> ( N x. B ) e. RR ) | 
						
							| 4 | 1 2 3 | syl2an |  |-  ( ( N e. ZZ /\ B e. RR+ ) -> ( N x. B ) e. RR ) | 
						
							| 5 |  | readdcl |  |-  ( ( A e. RR /\ ( N x. B ) e. RR ) -> ( A + ( N x. B ) ) e. RR ) | 
						
							| 6 | 4 5 | sylan2 |  |-  ( ( A e. RR /\ ( N e. ZZ /\ B e. RR+ ) ) -> ( A + ( N x. B ) ) e. RR ) | 
						
							| 7 | 6 | 3impb |  |-  ( ( A e. RR /\ N e. ZZ /\ B e. RR+ ) -> ( A + ( N x. B ) ) e. RR ) | 
						
							| 8 |  | simp3 |  |-  ( ( A e. RR /\ N e. ZZ /\ B e. RR+ ) -> B e. RR+ ) | 
						
							| 9 |  | modval |  |-  ( ( ( A + ( N x. B ) ) e. RR /\ B e. RR+ ) -> ( ( A + ( N x. B ) ) mod B ) = ( ( A + ( N x. B ) ) - ( B x. ( |_ ` ( ( A + ( N x. B ) ) / B ) ) ) ) ) | 
						
							| 10 | 7 8 9 | syl2anc |  |-  ( ( A e. RR /\ N e. ZZ /\ B e. RR+ ) -> ( ( A + ( N x. B ) ) mod B ) = ( ( A + ( N x. B ) ) - ( B x. ( |_ ` ( ( A + ( N x. B ) ) / B ) ) ) ) ) | 
						
							| 11 |  | recn |  |-  ( A e. RR -> A e. CC ) | 
						
							| 12 | 11 | 3ad2ant1 |  |-  ( ( A e. RR /\ N e. ZZ /\ B e. RR+ ) -> A e. CC ) | 
						
							| 13 | 4 | recnd |  |-  ( ( N e. ZZ /\ B e. RR+ ) -> ( N x. B ) e. CC ) | 
						
							| 14 | 13 | 3adant1 |  |-  ( ( A e. RR /\ N e. ZZ /\ B e. RR+ ) -> ( N x. B ) e. CC ) | 
						
							| 15 |  | rpcnne0 |  |-  ( B e. RR+ -> ( B e. CC /\ B =/= 0 ) ) | 
						
							| 16 | 15 | 3ad2ant3 |  |-  ( ( A e. RR /\ N e. ZZ /\ B e. RR+ ) -> ( B e. CC /\ B =/= 0 ) ) | 
						
							| 17 |  | divdir |  |-  ( ( A e. CC /\ ( N x. B ) e. CC /\ ( B e. CC /\ B =/= 0 ) ) -> ( ( A + ( N x. B ) ) / B ) = ( ( A / B ) + ( ( N x. B ) / B ) ) ) | 
						
							| 18 | 12 14 16 17 | syl3anc |  |-  ( ( A e. RR /\ N e. ZZ /\ B e. RR+ ) -> ( ( A + ( N x. B ) ) / B ) = ( ( A / B ) + ( ( N x. B ) / B ) ) ) | 
						
							| 19 |  | zcn |  |-  ( N e. ZZ -> N e. CC ) | 
						
							| 20 |  | divcan4 |  |-  ( ( N e. CC /\ B e. CC /\ B =/= 0 ) -> ( ( N x. B ) / B ) = N ) | 
						
							| 21 | 20 | 3expb |  |-  ( ( N e. CC /\ ( B e. CC /\ B =/= 0 ) ) -> ( ( N x. B ) / B ) = N ) | 
						
							| 22 | 19 15 21 | syl2an |  |-  ( ( N e. ZZ /\ B e. RR+ ) -> ( ( N x. B ) / B ) = N ) | 
						
							| 23 | 22 | 3adant1 |  |-  ( ( A e. RR /\ N e. ZZ /\ B e. RR+ ) -> ( ( N x. B ) / B ) = N ) | 
						
							| 24 | 23 | oveq2d |  |-  ( ( A e. RR /\ N e. ZZ /\ B e. RR+ ) -> ( ( A / B ) + ( ( N x. B ) / B ) ) = ( ( A / B ) + N ) ) | 
						
							| 25 | 18 24 | eqtrd |  |-  ( ( A e. RR /\ N e. ZZ /\ B e. RR+ ) -> ( ( A + ( N x. B ) ) / B ) = ( ( A / B ) + N ) ) | 
						
							| 26 | 25 | fveq2d |  |-  ( ( A e. RR /\ N e. ZZ /\ B e. RR+ ) -> ( |_ ` ( ( A + ( N x. B ) ) / B ) ) = ( |_ ` ( ( A / B ) + N ) ) ) | 
						
							| 27 |  | rerpdivcl |  |-  ( ( A e. RR /\ B e. RR+ ) -> ( A / B ) e. RR ) | 
						
							| 28 | 27 | 3adant2 |  |-  ( ( A e. RR /\ N e. ZZ /\ B e. RR+ ) -> ( A / B ) e. RR ) | 
						
							| 29 |  | simp2 |  |-  ( ( A e. RR /\ N e. ZZ /\ B e. RR+ ) -> N e. ZZ ) | 
						
							| 30 |  | fladdz |  |-  ( ( ( A / B ) e. RR /\ N e. ZZ ) -> ( |_ ` ( ( A / B ) + N ) ) = ( ( |_ ` ( A / B ) ) + N ) ) | 
						
							| 31 | 28 29 30 | syl2anc |  |-  ( ( A e. RR /\ N e. ZZ /\ B e. RR+ ) -> ( |_ ` ( ( A / B ) + N ) ) = ( ( |_ ` ( A / B ) ) + N ) ) | 
						
							| 32 | 26 31 | eqtrd |  |-  ( ( A e. RR /\ N e. ZZ /\ B e. RR+ ) -> ( |_ ` ( ( A + ( N x. B ) ) / B ) ) = ( ( |_ ` ( A / B ) ) + N ) ) | 
						
							| 33 | 32 | oveq2d |  |-  ( ( A e. RR /\ N e. ZZ /\ B e. RR+ ) -> ( B x. ( |_ ` ( ( A + ( N x. B ) ) / B ) ) ) = ( B x. ( ( |_ ` ( A / B ) ) + N ) ) ) | 
						
							| 34 |  | rpcn |  |-  ( B e. RR+ -> B e. CC ) | 
						
							| 35 | 34 | 3ad2ant3 |  |-  ( ( A e. RR /\ N e. ZZ /\ B e. RR+ ) -> B e. CC ) | 
						
							| 36 |  | reflcl |  |-  ( ( A / B ) e. RR -> ( |_ ` ( A / B ) ) e. RR ) | 
						
							| 37 | 36 | recnd |  |-  ( ( A / B ) e. RR -> ( |_ ` ( A / B ) ) e. CC ) | 
						
							| 38 | 27 37 | syl |  |-  ( ( A e. RR /\ B e. RR+ ) -> ( |_ ` ( A / B ) ) e. CC ) | 
						
							| 39 | 38 | 3adant2 |  |-  ( ( A e. RR /\ N e. ZZ /\ B e. RR+ ) -> ( |_ ` ( A / B ) ) e. CC ) | 
						
							| 40 | 19 | 3ad2ant2 |  |-  ( ( A e. RR /\ N e. ZZ /\ B e. RR+ ) -> N e. CC ) | 
						
							| 41 | 35 39 40 | adddid |  |-  ( ( A e. RR /\ N e. ZZ /\ B e. RR+ ) -> ( B x. ( ( |_ ` ( A / B ) ) + N ) ) = ( ( B x. ( |_ ` ( A / B ) ) ) + ( B x. N ) ) ) | 
						
							| 42 |  | mulcom |  |-  ( ( N e. CC /\ B e. CC ) -> ( N x. B ) = ( B x. N ) ) | 
						
							| 43 | 19 34 42 | syl2an |  |-  ( ( N e. ZZ /\ B e. RR+ ) -> ( N x. B ) = ( B x. N ) ) | 
						
							| 44 | 43 | 3adant1 |  |-  ( ( A e. RR /\ N e. ZZ /\ B e. RR+ ) -> ( N x. B ) = ( B x. N ) ) | 
						
							| 45 | 44 | eqcomd |  |-  ( ( A e. RR /\ N e. ZZ /\ B e. RR+ ) -> ( B x. N ) = ( N x. B ) ) | 
						
							| 46 | 45 | oveq2d |  |-  ( ( A e. RR /\ N e. ZZ /\ B e. RR+ ) -> ( ( B x. ( |_ ` ( A / B ) ) ) + ( B x. N ) ) = ( ( B x. ( |_ ` ( A / B ) ) ) + ( N x. B ) ) ) | 
						
							| 47 | 33 41 46 | 3eqtrd |  |-  ( ( A e. RR /\ N e. ZZ /\ B e. RR+ ) -> ( B x. ( |_ ` ( ( A + ( N x. B ) ) / B ) ) ) = ( ( B x. ( |_ ` ( A / B ) ) ) + ( N x. B ) ) ) | 
						
							| 48 | 47 | oveq2d |  |-  ( ( A e. RR /\ N e. ZZ /\ B e. RR+ ) -> ( ( A + ( N x. B ) ) - ( B x. ( |_ ` ( ( A + ( N x. B ) ) / B ) ) ) ) = ( ( A + ( N x. B ) ) - ( ( B x. ( |_ ` ( A / B ) ) ) + ( N x. B ) ) ) ) | 
						
							| 49 | 34 | adantl |  |-  ( ( A e. RR /\ B e. RR+ ) -> B e. CC ) | 
						
							| 50 | 49 38 | mulcld |  |-  ( ( A e. RR /\ B e. RR+ ) -> ( B x. ( |_ ` ( A / B ) ) ) e. CC ) | 
						
							| 51 | 50 | 3adant2 |  |-  ( ( A e. RR /\ N e. ZZ /\ B e. RR+ ) -> ( B x. ( |_ ` ( A / B ) ) ) e. CC ) | 
						
							| 52 | 12 51 14 | pnpcan2d |  |-  ( ( A e. RR /\ N e. ZZ /\ B e. RR+ ) -> ( ( A + ( N x. B ) ) - ( ( B x. ( |_ ` ( A / B ) ) ) + ( N x. B ) ) ) = ( A - ( B x. ( |_ ` ( A / B ) ) ) ) ) | 
						
							| 53 | 10 48 52 | 3eqtrd |  |-  ( ( A e. RR /\ N e. ZZ /\ B e. RR+ ) -> ( ( A + ( N x. B ) ) mod B ) = ( A - ( B x. ( |_ ` ( A / B ) ) ) ) ) | 
						
							| 54 |  | modval |  |-  ( ( A e. RR /\ B e. RR+ ) -> ( A mod B ) = ( A - ( B x. ( |_ ` ( A / B ) ) ) ) ) | 
						
							| 55 | 54 | 3adant2 |  |-  ( ( A e. RR /\ N e. ZZ /\ B e. RR+ ) -> ( A mod B ) = ( A - ( B x. ( |_ ` ( A / B ) ) ) ) ) | 
						
							| 56 | 53 55 | eqtr4d |  |-  ( ( A e. RR /\ N e. ZZ /\ B e. RR+ ) -> ( ( A + ( N x. B ) ) mod B ) = ( A mod B ) ) | 
						
							| 57 | 56 | 3com23 |  |-  ( ( A e. RR /\ B e. RR+ /\ N e. ZZ ) -> ( ( A + ( N x. B ) ) mod B ) = ( A mod B ) ) |