Metamath Proof Explorer


Theorem modcyc

Description: The modulo operation is periodic. (Contributed by NM, 10-Nov-2008)

Ref Expression
Assertion modcyc AB+NA+NBmodB=AmodB

Proof

Step Hyp Ref Expression
1 zre NN
2 rpre B+B
3 remulcl NBNB
4 1 2 3 syl2an NB+NB
5 readdcl ANBA+NB
6 4 5 sylan2 ANB+A+NB
7 6 3impb ANB+A+NB
8 simp3 ANB+B+
9 modval A+NBB+A+NBmodB=A+NB-BA+NBB
10 7 8 9 syl2anc ANB+A+NBmodB=A+NB-BA+NBB
11 recn AA
12 11 3ad2ant1 ANB+A
13 4 recnd NB+NB
14 13 3adant1 ANB+NB
15 rpcnne0 B+BB0
16 15 3ad2ant3 ANB+BB0
17 divdir ANBBB0A+NBB=AB+NBB
18 12 14 16 17 syl3anc ANB+A+NBB=AB+NBB
19 zcn NN
20 divcan4 NBB0NBB=N
21 20 3expb NBB0NBB=N
22 19 15 21 syl2an NB+NBB=N
23 22 3adant1 ANB+NBB=N
24 23 oveq2d ANB+AB+NBB=AB+N
25 18 24 eqtrd ANB+A+NBB=AB+N
26 25 fveq2d ANB+A+NBB=AB+N
27 rerpdivcl AB+AB
28 27 3adant2 ANB+AB
29 simp2 ANB+N
30 fladdz ABNAB+N=AB+N
31 28 29 30 syl2anc ANB+AB+N=AB+N
32 26 31 eqtrd ANB+A+NBB=AB+N
33 32 oveq2d ANB+BA+NBB=BAB+N
34 rpcn B+B
35 34 3ad2ant3 ANB+B
36 reflcl ABAB
37 36 recnd ABAB
38 27 37 syl AB+AB
39 38 3adant2 ANB+AB
40 19 3ad2ant2 ANB+N
41 35 39 40 adddid ANB+BAB+N=BAB+B N
42 mulcom NBNB=B N
43 19 34 42 syl2an NB+NB=B N
44 43 3adant1 ANB+NB=B N
45 44 eqcomd ANB+B N=NB
46 45 oveq2d ANB+BAB+B N=BAB+NB
47 33 41 46 3eqtrd ANB+BA+NBB=BAB+NB
48 47 oveq2d ANB+A+NB-BA+NBB=A+NB-BAB+NB
49 34 adantl AB+B
50 49 38 mulcld AB+BAB
51 50 3adant2 ANB+BAB
52 12 51 14 pnpcan2d ANB+A+NB-BAB+NB=ABAB
53 10 48 52 3eqtrd ANB+A+NBmodB=ABAB
54 modval AB+AmodB=ABAB
55 54 3adant2 ANB+AmodB=ABAB
56 53 55 eqtr4d ANB+A+NBmodB=AmodB
57 56 3com23 AB+NA+NBmodB=AmodB