Description: The modulo operation is periodic. (Contributed by NM, 10-Nov-2008)
Ref | Expression | ||
---|---|---|---|
Assertion | modcyc | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | zre | |
|
2 | rpre | |
|
3 | remulcl | |
|
4 | 1 2 3 | syl2an | |
5 | readdcl | |
|
6 | 4 5 | sylan2 | |
7 | 6 | 3impb | |
8 | simp3 | |
|
9 | modval | |
|
10 | 7 8 9 | syl2anc | |
11 | recn | |
|
12 | 11 | 3ad2ant1 | |
13 | 4 | recnd | |
14 | 13 | 3adant1 | |
15 | rpcnne0 | |
|
16 | 15 | 3ad2ant3 | |
17 | divdir | |
|
18 | 12 14 16 17 | syl3anc | |
19 | zcn | |
|
20 | divcan4 | |
|
21 | 20 | 3expb | |
22 | 19 15 21 | syl2an | |
23 | 22 | 3adant1 | |
24 | 23 | oveq2d | |
25 | 18 24 | eqtrd | |
26 | 25 | fveq2d | |
27 | rerpdivcl | |
|
28 | 27 | 3adant2 | |
29 | simp2 | |
|
30 | fladdz | |
|
31 | 28 29 30 | syl2anc | |
32 | 26 31 | eqtrd | |
33 | 32 | oveq2d | |
34 | rpcn | |
|
35 | 34 | 3ad2ant3 | |
36 | reflcl | |
|
37 | 36 | recnd | |
38 | 27 37 | syl | |
39 | 38 | 3adant2 | |
40 | 19 | 3ad2ant2 | |
41 | 35 39 40 | adddid | |
42 | mulcom | |
|
43 | 19 34 42 | syl2an | |
44 | 43 | 3adant1 | |
45 | 44 | eqcomd | |
46 | 45 | oveq2d | |
47 | 33 41 46 | 3eqtrd | |
48 | 47 | oveq2d | |
49 | 34 | adantl | |
50 | 49 38 | mulcld | |
51 | 50 | 3adant2 | |
52 | 12 51 14 | pnpcan2d | |
53 | 10 48 52 | 3eqtrd | |
54 | modval | |
|
55 | 54 | 3adant2 | |
56 | 53 55 | eqtr4d | |
57 | 56 | 3com23 | |