Metamath Proof Explorer


Theorem mof02

Description: A variant of mof0 . (Contributed by Zhi Wang, 20-Sep-2024)

Ref Expression
Assertion mof02 B=*ff:AB

Proof

Step Hyp Ref Expression
1 mof0 *ff:A
2 feq3 B=f:ABf:A
3 2 mobidv B=*ff:AB*ff:A
4 1 3 mpbiri B=*ff:AB