Metamath Proof Explorer


Theorem mon1pcl

Description: Monic polynomials are polynomials. (Contributed by Stefan O'Rear, 28-Mar-2015)

Ref Expression
Hypotheses uc1pcl.p P=Poly1R
uc1pcl.b B=BaseP
mon1pcl.m M=Monic1pR
Assertion mon1pcl FMFB

Proof

Step Hyp Ref Expression
1 uc1pcl.p P=Poly1R
2 uc1pcl.b B=BaseP
3 mon1pcl.m M=Monic1pR
4 eqid 0P=0P
5 eqid deg1R=deg1R
6 eqid 1R=1R
7 1 2 4 5 3 6 ismon1p FMFBF0Pcoe1Fdeg1RF=1R
8 7 simp1bi FMFB