Metamath Proof Explorer


Theorem mopnuni

Description: The union of all open sets in a metric space is its underlying set. (Contributed by NM, 4-Sep-2006) (Revised by Mario Carneiro, 12-Nov-2013)

Ref Expression
Hypothesis mopnval.1 J=MetOpenD
Assertion mopnuni D∞MetXX=J

Proof

Step Hyp Ref Expression
1 mopnval.1 J=MetOpenD
2 1 mopntopon D∞MetXJTopOnX
3 toponuni JTopOnXX=J
4 2 3 syl D∞MetXX=J