Metamath Proof Explorer


Theorem mpbiran3d

Description: Equivalence with a conjunction one of whose conjuncts is a consequence of the other. Deduction form. (Contributed by Zhi Wang, 24-Sep-2024)

Ref Expression
Hypotheses mpbiran3d.1 φψχθ
mpbiran3d.2 φχθ
Assertion mpbiran3d φψχ

Proof

Step Hyp Ref Expression
1 mpbiran3d.1 φψχθ
2 mpbiran3d.2 φχθ
3 1 simprbda φψχ
4 3 ex φψχ
5 2 ex φχθ
6 5 ancld φχχθ
7 6 1 sylibrd φχψ
8 4 7 impbid φψχ