Metamath Proof Explorer


Theorem mplrcl

Description: Reverse closure for the polynomial index set. (Contributed by Stefan O'Rear, 19-Mar-2015) (Revised by Mario Carneiro, 30-Aug-2015)

Ref Expression
Hypotheses mplrcl.p P=ImPolyR
mplrcl.b B=BaseP
Assertion mplrcl XBIV

Proof

Step Hyp Ref Expression
1 mplrcl.p P=ImPolyR
2 mplrcl.b B=BaseP
3 reldmmpl ReldommPoly
4 1 2 3 strov2rcl XBIV