Metamath Proof Explorer


Theorem mpodifsnif

Description: A mapping with two arguments with the first argument from a difference set with a singleton and a conditional as result. (Contributed by AV, 13-Feb-2019)

Ref Expression
Assertion mpodifsnif iAX,jBifi=XCD=iAX,jBD

Proof

Step Hyp Ref Expression
1 eldifsnneq iAX¬i=X
2 1 adantr iAXjB¬i=X
3 2 iffalsed iAXjBifi=XCD=D
4 3 mpoeq3ia iAX,jBifi=XCD=iAX,jBD