Metamath Proof Explorer


Theorem mpteq12i

Description: An equality inference for the maps-to notation. (Contributed by Scott Fenton, 27-Oct-2010) (Revised by Mario Carneiro, 16-Dec-2013)

Ref Expression
Hypotheses mpteq12i.1 A=C
mpteq12i.2 B=D
Assertion mpteq12i xAB=xCD

Proof

Step Hyp Ref Expression
1 mpteq12i.1 A=C
2 mpteq12i.2 B=D
3 1 a1i A=C
4 2 a1i B=D
5 3 4 mpteq12dv xAB=xCD
6 5 mptru xAB=xCD