Metamath Proof Explorer


Theorem mt2bi

Description: A false consequent falsifies an antecedent. (Contributed by NM, 19-Aug-1993) (Proof shortened by Wolf Lammen, 12-Nov-2012)

Ref Expression
Hypothesis mt2bi.1 φ
Assertion mt2bi ¬ψψ¬φ

Proof

Step Hyp Ref Expression
1 mt2bi.1 φ
2 1 a1bi ¬ψφ¬ψ
3 con2b φ¬ψψ¬φ
4 2 3 bitri ¬ψψ¬φ