Metamath Proof Explorer


Theorem mul2negd

Description: Product of two negatives. Theorem I.12 of Apostol p. 18. (Contributed by Mario Carneiro, 27-May-2016)

Ref Expression
Hypotheses mulm1d.1 φA
mulnegd.2 φB
Assertion mul2negd φAB=AB

Proof

Step Hyp Ref Expression
1 mulm1d.1 φA
2 mulnegd.2 φB
3 mul2neg ABAB=AB
4 1 2 3 syl2anc φAB=AB