Metamath Proof Explorer


Theorem mulcxpd

Description: Complex exponentiation of a product. Proposition 10-4.2(c) of Gleason p. 135. (Contributed by Mario Carneiro, 30-May-2016)

Ref Expression
Hypotheses recxpcld.1 φA
recxpcld.2 φ0A
recxpcld.3 φB
mulcxpd.4 φ0B
mulcxpd.5 φC
Assertion mulcxpd φABC=ACBC

Proof

Step Hyp Ref Expression
1 recxpcld.1 φA
2 recxpcld.2 φ0A
3 recxpcld.3 φB
4 mulcxpd.4 φ0B
5 mulcxpd.5 φC
6 mulcxp A0AB0BCABC=ACBC
7 1 2 3 4 5 6 syl221anc φABC=ACBC