Database REAL AND COMPLEX NUMBERS Elementary integer functions Integer powers mulexpd  
				
		 
		
			
		 
		Description:   Nonnegative integer exponentiation of a product.  Proposition 10-4.2(c)
       of Gleason  p. 135, restricted to nonnegative integer exponents.
       (Contributed by Mario Carneiro , 28-May-2016) 
		
			
				
					Ref 
					Expression 
				 
					
						Hypotheses 
						expcld.1    ⊢   φ   →   A  ∈   ℂ          
					 
					
						mulexpd.2    ⊢   φ   →   B  ∈   ℂ          
					 
					
						mulexpd.3    ⊢   φ   →   N  ∈    ℕ   0           
					 
				
					Assertion 
					mulexpd    ⊢   φ   →     A  ⁢  B    N    =    A  N    ⁢   B  N             
				 
			
		 
		
				Proof 
				
					
						Step 
						Hyp 
						Ref 
						Expression 
					 
						
							1 
								
							 
							expcld.1   ⊢   φ   →   A  ∈   ℂ          
						
							2 
								
							 
							mulexpd.2   ⊢   φ   →   B  ∈   ℂ          
						
							3 
								
							 
							mulexpd.3   ⊢   φ   →   N  ∈    ℕ   0           
						
							4 
								
							 
							mulexp   ⊢    A  ∈   ℂ     ∧   B  ∈   ℂ     ∧   N  ∈    ℕ   0       →     A  ⁢  B    N    =    A  N    ⁢   B  N             
						
							5 
								1  2  3  4 
							 
							syl3anc   ⊢   φ   →     A  ⁢  B    N    =    A  N    ⁢   B  N