Metamath Proof Explorer


Theorem mulne0bad

Description: A factor of a nonzero complex number is nonzero. Partial converse of mulne0d and consequence of mulne0bd . (Contributed by David Moews, 28-Feb-2017)

Ref Expression
Hypotheses mulne0bad.1 φA
mulne0bad.2 φB
mulne0bad.3 φAB0
Assertion mulne0bad φA0

Proof

Step Hyp Ref Expression
1 mulne0bad.1 φA
2 mulne0bad.2 φB
3 mulne0bad.3 φAB0
4 1 2 mulne0bd φA0B0AB0
5 3 4 mpbird φA0B0
6 5 simpld φA0