Metamath Proof Explorer


Theorem mulnegs2d

Description: Product with negative is negative of product. Part of theorem 7 of Conway p. 19. (Contributed by Scott Fenton, 10-Mar-2025)

Ref Expression
Hypotheses mulnegs1d.1 φANo
mulnegs1d.2 φBNo
Assertion mulnegs2d φAs+sB=+sAsB

Proof

Step Hyp Ref Expression
1 mulnegs1d.1 φANo
2 mulnegs1d.2 φBNo
3 2 1 mulnegs1d φ+sBsA=+sBsA
4 2 negscld φ+sBNo
5 1 4 mulscomd φAs+sB=+sBsA
6 1 2 mulscomd φAsB=BsA
7 6 fveq2d φ+sAsB=+sBsA
8 3 5 7 3eqtr4d φAs+sB=+sAsB