Description: Product with negative is negative of product. Part of theorem 7 of Conway p. 19. (Contributed by Scott Fenton, 10-Mar-2025)
Ref | Expression | ||
---|---|---|---|
Hypotheses | mulnegs1d.1 | |
|
mulnegs1d.2 | |
||
Assertion | mulnegs2d | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mulnegs1d.1 | |
|
2 | mulnegs1d.2 | |
|
3 | 2 1 | mulnegs1d | |
4 | 2 | negscld | |
5 | 1 4 | mulscomd | |
6 | 1 2 | mulscomd | |
7 | 6 | fveq2d | |
8 | 3 5 7 | 3eqtr4d | |