Metamath Proof Explorer


Theorem mzpnegmpt

Description: Negation of a polynomial function. (Contributed by Stefan O'Rear, 11-Oct-2014)

Ref Expression
Assertion mzpnegmpt xVAmzPolyVxVAmzPolyV

Proof

Step Hyp Ref Expression
1 df-neg A=0A
2 1 mpteq2i xVA=xV0A
3 elfvex xVAmzPolyVVV
4 0z 0
5 mzpconstmpt VV0xV0mzPolyV
6 3 4 5 sylancl xVAmzPolyVxV0mzPolyV
7 mzpsubmpt xV0mzPolyVxVAmzPolyVxV0AmzPolyV
8 6 7 mpancom xVAmzPolyVxV0AmzPolyV
9 2 8 eqeltrid xVAmzPolyVxVAmzPolyV