Metamath Proof Explorer


Theorem n0moeu

Description: A case of equivalence of "at most one" and "only one". (Contributed by FL, 6-Dec-2010)

Ref Expression
Assertion n0moeu A*xxA∃!xxA

Proof

Step Hyp Ref Expression
1 n0 AxxA
2 1 biimpi AxxA
3 2 biantrurd A*xxAxxA*xxA
4 df-eu ∃!xxAxxA*xxA
5 3 4 bitr4di A*xxA∃!xxA