Metamath Proof Explorer


Theorem nabbib

Description: Not equivalent wff's correspond to not equal class abstractions. (Contributed by AV, 7-Apr-2019) (Proof shortened by Wolf Lammen, 25-Nov-2019) Definitial form. (Revised by Wolf Lammen, 5-Mar-2025)

Ref Expression
Assertion nabbib x|φx|ψxφ¬ψ

Proof

Step Hyp Ref Expression
1 df-ne x|φx|ψ¬x|φ=x|ψ
2 exnal x¬φψ¬xφψ
3 xor3 ¬φψφ¬ψ
4 3 exbii x¬φψxφ¬ψ
5 2 4 bitr3i ¬xφψxφ¬ψ
6 abbib x|φ=x|ψxφψ
7 5 6 xchnxbir ¬x|φ=x|ψxφ¬ψ
8 1 7 bitri x|φx|ψxφ¬ψ