Metamath Proof Explorer


Theorem naev2

Description: Generalization of hbnaev . (Contributed by Wolf Lammen, 9-Apr-2021)

Ref Expression
Assertion naev2 ¬xx=yz¬tt=u

Proof

Step Hyp Ref Expression
1 naev ¬xx=y¬vv=w
2 ax-5 ¬vv=wz¬vv=w
3 naev ¬vv=w¬tt=u
4 3 alimi z¬vv=wz¬tt=u
5 1 2 4 3syl ¬xx=yz¬tt=u