Description: Generalization of hbnaev . (Contributed by Wolf Lammen, 9-Apr-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | naev2 | ⊢ ( ¬ ∀ 𝑥 𝑥 = 𝑦 → ∀ 𝑧 ¬ ∀ 𝑡 𝑡 = 𝑢 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | naev | ⊢ ( ¬ ∀ 𝑥 𝑥 = 𝑦 → ¬ ∀ 𝑣 𝑣 = 𝑤 ) | |
| 2 | ax-5 | ⊢ ( ¬ ∀ 𝑣 𝑣 = 𝑤 → ∀ 𝑧 ¬ ∀ 𝑣 𝑣 = 𝑤 ) | |
| 3 | naev | ⊢ ( ¬ ∀ 𝑣 𝑣 = 𝑤 → ¬ ∀ 𝑡 𝑡 = 𝑢 ) | |
| 4 | 3 | alimi | ⊢ ( ∀ 𝑧 ¬ ∀ 𝑣 𝑣 = 𝑤 → ∀ 𝑧 ¬ ∀ 𝑡 𝑡 = 𝑢 ) |
| 5 | 1 2 4 | 3syl | ⊢ ( ¬ ∀ 𝑥 𝑥 = 𝑦 → ∀ 𝑧 ¬ ∀ 𝑡 𝑡 = 𝑢 ) |