Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Anthony Hart
Predicate Calculus
nalfal
Next ⟩
nexntru
Metamath Proof Explorer
Ascii
Unicode
Theorem
nalfal
Description:
Not all sets hold
F.
as true.
(Contributed by
Anthony Hart
, 13-Sep-2011)
Ref
Expression
Assertion
nalfal
⊢
¬
∀
x
⊥
Proof
Step
Hyp
Ref
Expression
1
alfal
⊢
∀
x
¬
⊥
2
falim
⊢
⊥
→
¬
∀
x
¬
⊥
3
2
sps
⊢
∀
x
⊥
→
¬
∀
x
¬
⊥
4
1
3
mt2
⊢
¬
∀
x
⊥