Metamath Proof Explorer


Theorem nalfal

Description: Not all sets hold F. as true. (Contributed by Anthony Hart, 13-Sep-2011)

Ref Expression
Assertion nalfal ¬ ∀ 𝑥

Proof

Step Hyp Ref Expression
1 alfal 𝑥 ¬ ⊥
2 falim ( ⊥ → ¬ ∀ 𝑥 ¬ ⊥ )
3 2 sps ( ∀ 𝑥 ⊥ → ¬ ∀ 𝑥 ¬ ⊥ )
4 1 3 mt2 ¬ ∀ 𝑥