Description: Not all sets hold F. as true. (Contributed by Anthony Hart, 13-Sep-2011)
Ref | Expression | ||
---|---|---|---|
Assertion | nalfal | ⊢ ¬ ∀ 𝑥 ⊥ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | alfal | ⊢ ∀ 𝑥 ¬ ⊥ | |
2 | falim | ⊢ ( ⊥ → ¬ ∀ 𝑥 ¬ ⊥ ) | |
3 | 2 | sps | ⊢ ( ∀ 𝑥 ⊥ → ¬ ∀ 𝑥 ¬ ⊥ ) |
4 | 1 3 | mt2 | ⊢ ¬ ∀ 𝑥 ⊥ |