Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Anthony Hart
Predicate Calculus
nalfal
Next ⟩
nexntru
Metamath Proof Explorer
Ascii
Structured
Theorem
nalfal
Description:
Not all sets hold
F.
as true.
(Contributed by
Anthony Hart
, 13-Sep-2011)
Ref
Expression
Assertion
nalfal
⊢
¬ ∀
𝑥
⊥
Proof
Step
Hyp
Ref
Expression
1
alfal
⊢
∀
𝑥
¬ ⊥
2
falim
⊢
( ⊥ → ¬ ∀
𝑥
¬ ⊥ )
3
2
sps
⊢
( ∀
𝑥
⊥ → ¬ ∀
𝑥
¬ ⊥ )
4
1
3
mt2
⊢
¬ ∀
𝑥
⊥