Metamath Proof Explorer


Theorem ndisj

Description: Express that an intersection is not empty. (Contributed by RP, 16-Apr-2020)

Ref Expression
Assertion ndisj ABxxAxB

Proof

Step Hyp Ref Expression
1 n0 ABxxAB
2 elin xABxAxB
3 2 exbii xxABxxAxB
4 1 3 bitri ABxxAxB