Metamath Proof Explorer


Theorem ndmov

Description: The value of an operation outside its domain. (Contributed by NM, 24-Aug-1995)

Ref Expression
Hypothesis ndmov.1 domF=S×S
Assertion ndmov ¬ASBSAFB=

Proof

Step Hyp Ref Expression
1 ndmov.1 domF=S×S
2 ndmovg domF=S×S¬ASBSAFB=
3 1 2 mpan ¬ASBSAFB=