Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - start with the Axiom of Extensionality
Negated equality and membership
Negated equality
necomd
Next ⟩
nesym
Metamath Proof Explorer
Ascii
Unicode
Theorem
necomd
Description:
Deduction from commutative law for inequality.
(Contributed by
NM
, 12-Feb-2008)
Ref
Expression
Hypothesis
necomd.1
⊢
φ
→
A
≠
B
Assertion
necomd
⊢
φ
→
B
≠
A
Proof
Step
Hyp
Ref
Expression
1
necomd.1
⊢
φ
→
A
≠
B
2
necom
⊢
A
≠
B
↔
B
≠
A
3
1
2
sylib
⊢
φ
→
B
≠
A