Metamath Proof Explorer


Theorem necon4bbid

Description: Contrapositive law deduction for inequality. (Contributed by NM, 9-May-2012)

Ref Expression
Hypothesis necon4bbid.1 φ¬ψAB
Assertion necon4bbid φψA=B

Proof

Step Hyp Ref Expression
1 necon4bbid.1 φ¬ψAB
2 1 bicomd φAB¬ψ
3 2 necon4abid φA=Bψ
4 3 bicomd φψA=B