Metamath Proof Explorer


Theorem neeq12i

Description: Inference for inequality. (Contributed by NM, 24-Jul-2012) (Proof shortened by Wolf Lammen, 25-Nov-2019)

Ref Expression
Hypotheses neeq1i.1 A=B
neeq12i.2 C=D
Assertion neeq12i ACBD

Proof

Step Hyp Ref Expression
1 neeq1i.1 A=B
2 neeq12i.2 C=D
3 1 2 eqeq12i A=CB=D
4 3 necon3bii ACBD