Metamath Proof Explorer


Theorem negeq0d

Description: A number is zero iff its negative is zero. (Contributed by Mario Carneiro, 27-May-2016)

Ref Expression
Hypothesis negidd.1 φA
Assertion negeq0d φA=0A=0

Proof

Step Hyp Ref Expression
1 negidd.1 φA
2 negeq0 AA=0A=0
3 1 2 syl φA=0A=0