Metamath Proof Explorer


Theorem nesymir

Description: Inference associated with nesym . (Contributed by BJ, 7-Jul-2018) (Proof shortened by Wolf Lammen, 25-Nov-2019)

Ref Expression
Hypothesis nesymir.1 ¬A=B
Assertion nesymir BA

Proof

Step Hyp Ref Expression
1 nesymir.1 ¬A=B
2 1 neir AB
3 2 necomi BA