Metamath Proof Explorer


Theorem nfand

Description: If in a context x is not free in ps and ch , then it is not free in ( ps /\ ch ) . (Contributed by Mario Carneiro, 7-Oct-2016)

Ref Expression
Hypotheses nfand.1 φxψ
nfand.2 φxχ
Assertion nfand φxψχ

Proof

Step Hyp Ref Expression
1 nfand.1 φxψ
2 nfand.2 φxχ
3 df-an ψχ¬ψ¬χ
4 2 nfnd φx¬χ
5 1 4 nfimd φxψ¬χ
6 5 nfnd φx¬ψ¬χ
7 3 6 nfxfrd φxψχ