Metamath Proof Explorer


Theorem nfceqdfOLD

Description: Obsolete version of nfceqdf as of 23-Aug-2024. (Contributed by Mario Carneiro, 14-Oct-2016) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypotheses nfceqdf.1 xφ
nfceqdf.2 φA=B
Assertion nfceqdfOLD φ_xA_xB

Proof

Step Hyp Ref Expression
1 nfceqdf.1 xφ
2 nfceqdf.2 φA=B
3 2 eleq2d φyAyB
4 1 3 nfbidf φxyAxyB
5 4 albidv φyxyAyxyB
6 df-nfc _xAyxyA
7 df-nfc _xByxyB
8 5 6 7 3bitr4g φ_xA_xB