Metamath Proof Explorer


Theorem nfceqi

Description: Equality theorem for class not-free. (Contributed by Mario Carneiro, 11-Aug-2016) (Proof shortened by Wolf Lammen, 16-Nov-2019) Avoid ax-12 . (Revised by Wolf Lammen, 19-Jun-2023)

Ref Expression
Hypothesis nfceqi.1 A=B
Assertion nfceqi _xA_xB

Proof

Step Hyp Ref Expression
1 nfceqi.1 A=B
2 1 eleq2i yAyB
3 2 nfbii xyAxyB
4 3 albii yxyAyxyB
5 df-nfc _xAyxyA
6 df-nfc _xByxyB
7 4 5 6 3bitr4i _xA_xB