Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - start with the Axiom of Extensionality
Proper substitution of classes for sets into classes
nfcsbw
Metamath Proof Explorer
Description: Bound-variable hypothesis builder for substitution into a class.
Version of nfcsb with a disjoint variable condition, which does not
require ax-13 . (Contributed by Mario Carneiro , 12-Oct-2016)
(Revised by Gino Giotto , 10-Jan-2024)
Ref
Expression
Hypotheses
nfcsbw.1
⊢ Ⅎ _ x A
nfcsbw.2
⊢ Ⅎ _ x B
Assertion
nfcsbw
⊢ Ⅎ _ x ⦋ A / y ⦌ B
Proof
Step
Hyp
Ref
Expression
1
nfcsbw.1
⊢ Ⅎ _ x A
2
nfcsbw.2
⊢ Ⅎ _ x B
3
df-csb
⊢ ⦋ A / y ⦌ B = z | [ ˙ A / y ] ˙ z ∈ B
4
nftru
⊢ Ⅎ z ⊤
5
nftru
⊢ Ⅎ y ⊤
6
1
a1i
⊢ ⊤ → Ⅎ _ x A
7
2
a1i
⊢ ⊤ → Ⅎ _ x B
8
7
nfcrd
⊢ ⊤ → Ⅎ x z ∈ B
9
5 6 8
nfsbcdw
⊢ ⊤ → Ⅎ x [ ˙ A / y ] ˙ z ∈ B
10
4 9
nfabdw
⊢ ⊤ → Ⅎ _ x z | [ ˙ A / y ] ˙ z ∈ B
11
3 10
nfcxfrd
⊢ ⊤ → Ⅎ _ x ⦋ A / y ⦌ B
12
11
mptru
⊢ Ⅎ _ x ⦋ A / y ⦌ B