Database ZF (ZERMELO-FRAENKEL) SET THEORY ZF Set Theory - start with the Axiom of Extensionality Disjointness nfdisjw  
				
		 
		
			
		 
		Description:   Bound-variable hypothesis builder for disjoint collection.  Version of
       nfdisj  with a disjoint variable condition, which does not require
       ax-13  .  (Contributed by Mario Carneiro , 14-Nov-2016)   Avoid
       ax-13  .  (Revised by GG , 26-Jan-2024) 
		
			
				
					Ref 
					Expression 
				 
					
						Hypotheses 
						nfdisjw.1   ⊢    Ⅎ   _  y  A       
					 
					
						nfdisjw.2   ⊢    Ⅎ   _  y  B       
					 
				
					Assertion 
					nfdisjw   ⊢   Ⅎ  y  Disj  x  ∈  A B       
				 
			
		 
		
				Proof 
				
					
						Step 
						Hyp 
						Ref 
						Expression 
					 
						
							1 
								
							 
							nfdisjw.1  ⊢    Ⅎ   _  y  A       
						
							2 
								
							 
							nfdisjw.2  ⊢    Ⅎ   _  y  B       
						
							3 
								
							 
							dfdisj2   ⊢  Disj  x  ∈  A B  ↔   ∀  z   ∃ * x    x  ∈  A    ∧   z  ∈  B              
						
							4 
								
							 
							nftru  ⊢   Ⅎ  x  ⊤       
						
							5 
								
							 
							nfcvd   ⊢  ⊤  →    Ⅎ   _  y  x         
						
							6 
								1 
							 
							a1i   ⊢  ⊤  →    Ⅎ   _  y  A         
						
							7 
								5  6 
							 
							nfeld   ⊢  ⊤  →   Ⅎ  y   x  ∈  A           
						
							8 
								2 
							 
							nfcri  ⊢   Ⅎ  y   z  ∈  B         
						
							9 
								8 
							 
							a1i   ⊢  ⊤  →   Ⅎ  y   z  ∈  B           
						
							10 
								7  9 
							 
							nfand   ⊢  ⊤  →   Ⅎ  y    x  ∈  A    ∧   z  ∈  B            
						
							11 
								4  10 
							 
							nfmodv   ⊢  ⊤  →   Ⅎ  y   ∃ * x    x  ∈  A    ∧   z  ∈  B              
						
							12 
								11 
							 
							mptru  ⊢   Ⅎ  y   ∃ * x    x  ∈  A    ∧   z  ∈  B            
						
							13 
								12 
							 
							nfal  ⊢   Ⅎ  y   ∀  z   ∃ * x    x  ∈  A    ∧   z  ∈  B              
						
							14 
								3  13 
							 
							nfxfr  ⊢   Ⅎ  y  Disj  x  ∈  A B