Metamath Proof Explorer


Theorem nfeqf2

Description: An equation between setvar is free of any other setvar. Usage of this theorem is discouraged because it depends on ax-13 . (Contributed by Wolf Lammen, 9-Jun-2019) Remove dependency on ax-12 . (Revised by Wolf Lammen, 16-Dec-2022) (New usage is discouraged.)

Ref Expression
Assertion nfeqf2 ¬xx=yxz=y

Proof

Step Hyp Ref Expression
1 exnal x¬x=y¬xx=y
2 hbe1 xz=yxxz=y
3 ax13lem2 ¬x=yxz=yz=y
4 ax13lem1 ¬x=yz=yxz=y
5 3 4 syldc xz=y¬x=yxz=y
6 2 5 eximdh xz=yx¬x=yxxz=y
7 hbe1a xxz=yxz=y
8 6 7 syl6com x¬x=yxz=yxz=y
9 8 nfd x¬x=yxz=y
10 1 9 sylbir ¬xx=yxz=y