Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - start with the Axiom of Extensionality
Class form not-free predicate
nfnfc1
Next ⟩
clelsb1fw
Metamath Proof Explorer
Ascii
Unicode
Theorem
nfnfc1
Description:
The setvar
x
is bound in
F/_ x A
.
(Contributed by
Mario Carneiro
, 11-Aug-2016)
Ref
Expression
Assertion
nfnfc1
⊢
Ⅎ
x
Ⅎ
_
x
A
Proof
Step
Hyp
Ref
Expression
1
df-nfc
⊢
Ⅎ
_
x
A
↔
∀
y
Ⅎ
x
y
∈
A
2
nfnf1
⊢
Ⅎ
x
Ⅎ
x
y
∈
A
3
2
nfal
⊢
Ⅎ
x
∀
y
Ⅎ
x
y
∈
A
4
1
3
nfxfr
⊢
Ⅎ
x
Ⅎ
_
x
A