Metamath Proof Explorer


Theorem nfra2wOLD

Description: Obsolete version of nfra2w as of 31-Oct-2024. (Contributed by Alan Sare, 31-Dec-2011) (Revised by Gino Giotto, 24-Sep-2024) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion nfra2wOLD yxAyBφ

Proof

Step Hyp Ref Expression
1 df-ral xAyBφxxAyBφ
2 df-ral yBφyyBφ
3 2 imbi2i xAyBφxAyyBφ
4 3 albii xxAyBφxxAyyBφ
5 1 4 bitri xAyBφxxAyyBφ
6 nfa1 yyxxAyBφ
7 alcom yxxAyBφxyxAyBφ
8 19.21v yxAyBφxAyyBφ
9 8 albii xyxAyBφxxAyyBφ
10 7 9 bitri yxxAyBφxxAyyBφ
11 10 nfbii yyxxAyBφyxxAyyBφ
12 6 11 mpbi yxxAyyBφ
13 5 12 nfxfr yxAyBφ