Metamath Proof Explorer


Theorem nfrabw

Description: A variable not free in a wff remains so in a restricted class abstraction. Version of nfrab with a disjoint variable condition, which does not require ax-13 . (Contributed by NM, 13-Oct-2003) (Revised by Gino Giotto, 10-Jan-2024) (Proof shortened by Wolf Lammen, 23-Nov-2024)

Ref Expression
Hypotheses nfrabw.1 x φ
nfrabw.2 _ x A
Assertion nfrabw _ x y A | φ

Proof

Step Hyp Ref Expression
1 nfrabw.1 x φ
2 nfrabw.2 _ x A
3 df-rab y A | φ = y | y A φ
4 nftru y
5 2 nfcri x y A
6 5 1 nfan x y A φ
7 6 a1i x y A φ
8 4 7 nfabdw _ x y | y A φ
9 8 mptru _ x y | y A φ
10 3 9 nfcxfr _ x y A | φ