Metamath Proof Explorer


Theorem nfrex

Description: Bound-variable hypothesis builder for restricted quantification. (Contributed by NM, 1-Sep-1999) (Revised by Mario Carneiro, 7-Oct-2016) (Proof shortened by Wolf Lammen, 30-Dec-2019) Add disjoint variable condition to avoid ax-13 . See nfrexg for a less restrictive version requiring more axioms. (Revised by Gino Giotto, 20-Jan-2024)

Ref Expression
Hypotheses nfrex.1 _ x A
nfrex.2 x φ
Assertion nfrex x y A φ

Proof

Step Hyp Ref Expression
1 nfrex.1 _ x A
2 nfrex.2 x φ
3 nftru y
4 1 a1i _ x A
5 2 a1i x φ
6 3 4 5 nfrexd x y A φ
7 6 mptru x y A φ