Metamath Proof Explorer


Theorem nfrexdw

Description: Deduction version of nfrexw . (Contributed by Mario Carneiro, 14-Oct-2016) Add disjoint variable condition to avoid ax-13 . See nfrexd for a less restrictive version requiring more axioms. (Revised by Gino Giotto, 20-Jan-2024)

Ref Expression
Hypotheses nfraldw.1 yφ
nfraldw.2 φ_xA
nfraldw.3 φxψ
Assertion nfrexdw φxyAψ

Proof

Step Hyp Ref Expression
1 nfraldw.1 yφ
2 nfraldw.2 φ_xA
3 nfraldw.3 φxψ
4 dfrex2 yAψ¬yA¬ψ
5 3 nfnd φx¬ψ
6 1 2 5 nfraldw φxyA¬ψ
7 6 nfnd φx¬yA¬ψ
8 4 7 nfxfrd φxyAψ